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1 CONVEX SURFACES

1 Convex Surfaces

1.1 First Definition of a Convex Surface

To motivate our discussion, we consider two fundamental questions in contact ge-
ometry:

Question 1. Which 3-manifolds admit contact structures?

Question 2. Given a fixed contact 3-manifold pM, ξq, how many distinct contact structures
does M support?

A key tool in addressing these questions is convex surface theory, which provides
a way to analyze and classify contact structures using surfaces embedded in 3-
manifolds.

Theorem 1.1 (Lickorish). Every “nice” 3-manifold can be obtained via surgery along
a knot or link in S3. The key idea behind this construction is the process of cutting
and gluing pieces together to form new manifolds.

Example. Standard examples of contact 3-manifolds include:

• The solid torus D2 ˆ S1, which can be described in coordinates as:

D2 ˆ S1 “ tpx, y, θq P R2 ˆ S1 | x2 ` y2 ď 1u

equipped with the contact form α “ cospθqdx´ sinpθqdy. From α, we have two
distinguished dividing curves on the boundary of the neighborhood, given by

ℓ˘ :“ tp˘δ sinpzq,˘δ cospzq, zq | θ P S1u.

These curves demonstrate the twisting of the contact plane as you move around
the solid torus in the direction of θ.

t0u ˆ S1

ℓ`

ℓ´

y

θ

x
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1.1 First Definition of a Convex Surface 1 CONVEX SURFACES

• The 3-sphere S3, which can be decomposed into two solid 3-balls glued together
along their boundary:

S3 “ B3
` Yf B

3
´.

B3
` B3

´

α` α´

f : S2 Ñ S2

f˚

The process of gluing 3-manifolds together can be technically challenging. Convex
surface theory provides a way to manage this difficulty by working with surfaces that
interact with the contact structure in a relatively manageable way.
We’ll begin our discussion of convex surface theory with the notion of characteristic
foliations.

Definition 1.2 (Characteristic foliation). Given a contact 3-manifold pM3, ξq, an
embedded surface Σ Ă M has a characteristic foliation Fξ defined by the inter-
section of the contact structure with the tangent bundle of the surface:

Fξ “ TΣ X ξ.

Remark 1. At most points on Σ, the intersection TpΣXξp is one-dimensional, form-
ing a smooth distribution that defines a foliation of Σ. However, at singular points p
where TpΣ aligns with ξp, the characteristic foliation exhibits isolated singularities.

Remark 2. Some authors (see [Gei08, Dfn 2.5.18]) alternatively define the charac-
teristic foliation using the symplectic orthogonal complement:

Fξ “ pTΣ X ξqK.

In this formulation, singularities of the foliation correspond to points where the
distribution becomes zero-dimensional.
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1.1 First Definition of a Convex Surface 1 CONVEX SURFACES

Example. Common examples of surfaces with their characteristic foliations include:

• A 2-sphere S2 embedded in R3 with the radial contact structure. See [Gei08,
Exm 2.5.19].

S2

• A torus T 2 embedded in the solid torus D2 ˆ S1.

Singularities of the characteristic foliation in a neighborhood can look like:

One might ask, is it possible to have singularities with an arbitrary number of prongs,
such as 6 instead of the usual 4? In fact, there is an analogy with Morse functions
on surfaces that suggests that singularities of characteristic foliations must follow
certain constraints. Generically, A small perturbation of Σ can be performed to
ensure that the intersection with ξ always produces a foliation with only the above
expected types of singularities.
The characteristic foliation is of importance precisely because Fξ on Σ determines
the contact structure in a neighborhood of Σ. This means that by understanding the
foliation, we can infer information about the local structure of ξ. Before we proceed
further in developing this tool, we will first address a more foundational question:
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1.1 First Definition of a Convex Surface 1 CONVEX SURFACES

Question. What does it really mean to glue two 3-manifolds together?

Recall that in the smooth category, we glue two manifolds M and N together along
some submanifold Σ via an identification of a neighborhood of Σ in each M and N .
More precisely, if given an embedding Σ ãÑ M and Σ ãÑ N , then we form M YΣ N
by taking the fibered product:
All that’s needed to make this identification is a diffeomorphism ϕ : Σ Ă M Ñ Σ Ă

N . However, to extend this notion to the contact setting, we’ll need ϕ to preserve
the contact structure along Σ. That is, we need a way of matching the contact
structures on N and M via Σ. To analyze how contact structures behave under
gluing, we must introduce the notion of contact vector fields:

Definition 1.3 (Contact vector field). A vector field v P ΓpTMq is contact if it
satisfies:

Lvpαq “ fα

for some smooth function f P C8pMq. Equivalently, this condition ensures that the
flow generated by v preserves the contact structure, meaning pϕV q˚pξq “ ξ.

Definition 1.4 (Convex surface). A closed surface Σ Ă M3 is convex (with
respect to a contact vector field v) if v is transverse to Σ.

A convex surface naturally decomposes into regions separated by a dividing set:

Definition 1.5 (Dividing set). The dividing set of a closed surface Σ Ă M3 is the
locus where the contact form evaluates to zero along v:

Γ “ tp P Σ | αppvpq “ 0u.

Equivalently, it consists of points where the vector field v lies in the contact plane
ξp.

A key question is how the dividing set relates to the characteristic foliation:

Question. What is the relationship between the dividing set and the characteristic
foliation of a surface?

Answer. Given a closed surface Σ Ă M , it naturally inherits a characteristic folia-
tion from the contact structure ξ. A fundamental result states that any such surface
can be slightly perturbed to become convex, meaning it admits a transverse contact
vector field. The dividing set of Σ is determined by the equation ιvpαq “ 0, i.e.
a level set of a function Σ Ñ R. One can show that 0 is a regular value, so that
pιvpαqq´1p0q is a hypersurface on Σ - a 1-dimensional (multi)curve. Moreover, one
may show that Γξ is nonempty and is transverse to the characteristic foliation of Σ.
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1.1 First Definition of a Convex Surface 1 CONVEX SURFACES

Lemma 1.6. Γξ is a submanifold of Σ.

Proof. Without loss of generality, we can identify a tubular neighborhood of Σ as
νpΣq » Σ ˆ Iz, and in these coordinates we can write α “ β ` udz. We also choose
the identification so that Bz corresponds to the contact vector field v. Consider
Γξ :“ tp P Σ | αppvpq “ 0u. So if p P Γxi, then

0 “ αppvpq “ βppBzq ` uppqdzpBzq “ 0 ` uppq,

so that Γξ “ u´1p0q. We can thus show that Γxi is a submanifold of Σ if 0 is a
regular value of u. Since α is contact, by definition we know α ^ dα ą 0. In local
coordinates this becomes

α ^ dα “pβ ` udzq ^ dpβ ` udzq

“β ^ dβ ` β ^ du^ dz ` udz ^ dβ ` udz ^ du^ dz

“pβ ^ du` udβq ^ dz ą 0

so that β ^ du` udβ ą 0 is an area form on Σ. For p P Γξ :“ u´1p0q, then

βp ^ dup ` uppqdβp “ βp ^ dup ` 0 ą 0,

so we know that dup ‰ 0 on Γξ. I.e., 0 is a regular value of u.

Lemma 1.7. Γξ is transverse to Fξ.

Proof. Suppose that Γξ and Fξ are not transverse. Then there exists a point
p P Γ X L for a leaf L Ă F and a vector wp P TpΓ X TpL. We have the following
information:

• vp is transverse to Σ, so wp ‰ vp, and αppvpq “ 0 since p P Γ.

• αppwpq “ 0 since wp P TpL Ď ξ.

So, if we can show that pdαpqpwp, vpq “ 0, then this will violate the fact that α is a
contact structure. We calculate that

Lvα “ fα ùñ ιv ˝ dα ` d ˝ ιvα “ fα

ùñ ιvp ˝ dαp ` d ˝ ιvpαp “ fαp

ùñ pιvp ˝ ).αp`0 “ fαp

ùñ ιvppdαpq “ fαp.

But since αppwpq “ 0,

ùñ ιwpιwppdαpq “ fαppwpq “ 0

ùñ pdαpqpwp, vpq “ 0,

as required.
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1.2 Worked Example of a Convex Surface 1 CONVEX SURFACES

General Idea. The characteristic foliation can be thought of as a family of “flow
lines” on the surface, while the dividing set consists of curves where the flow lines
abruptly change direction. Since this change must occur transversely, the dividing
set is naturally embedded within the surface.

Exercise. Compute Γξ for D2ˆS2, Σ “ T 2, using the radial vector field as a contact
vector field with respect to which Σ is convex.

Theorem 1.8. If F1, F2 are characteristic foliation for a surface Σ with respect to
contact structures ξ1 and ξ2, then there is a “nice” isotopy ϕ of Σ Ă νpΣq such that
Fϕpξ1q “ ϕpFξ2q

1.2 Worked Example of a Convex Surface

Reminder of last time:

Question. How do we glue contact manifolds?

Recall the first picture of gluing we described:

B3
` B3

´

α` α´

f : S2 Ñ S2

f˚

This was our toy case for gluing two contact manifolds along their boundary. In this
case, our contact 3-manifolds are 3-balls each equipped with the standard contact
structure (with opposing orientations) and we can glue these two contact manifolds
together by finding some diffeomorphism of the boundary that “transports” one con-
tact structure to another. That is, we find a diffeomorphism f : S2 Ñ S2 such that
f˚pα´q|S2 “ α`|S2 . The fact that f is a diffeomorphism of the boundary allows us
to conclude that the resulting manifold is smooth, and the fact that f is a contacto-
morphism on the boundary allows us to smoothly identify the contact structures of
each ball along the boundary. In short, given such an f , gluing is possible. However,
this requires a lot of work to find when your gluing surface is not just S2!
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1.2 Worked Example of a Convex Surface 1 CONVEX SURFACES

Last time: we talked about a few improvements and reductions we can make to
this construction:

1. Characteristic foliations. By introducing the notion of a characteristic foliation
of the surface Σ we wish to glue along, we found that less information was
needed to specify a gluing map than before. It turns out that if ξ1 and ξ2 are
contact structures on some 3-manifold M , then for a surface Σ Ă M , if write
out the characteristic foliations and find a diffeomorphism f : Σ Ñ Σ such that

f˚pFξ1q “ Fξ2 , then we know that f extends to a contactomorphism on a
neighborhood of Σ. In other words, the characteristic foliation determines the
contact structure in a small neighborhood of the surface Σ. How is this helpful?
Well, what this means is that if you have two surfaces that admit the same
characteristic foliation, then there is a contactomorphism on neighborhoods of
those surfaces, which we can glue the two ambient manifolds together along in
a manner that induces a contact structure.

2. Further, we also saw that we can do even better with dividing sets, given that
Σ is a convex surface with respect to a contact vector field. It turns out that,
given two surfaces with the same dividing set, their characteristic foliations are
the same up to contact isotopy.

Today: we will work through the specific example of the solid torus.

Example. Recall that the solid torus is given by D2 ˆ S1 “ tpx, y, θq P R2 ˆ

S1 | x2 ` y2 “ 1u. Then D2 ˆ S1 is a contact 3-manifold, with contact form
λ “ cospθqdx´ sinpθqdy

Let V be the vector field on D2 ˆ S1 given by V “ xBx ` yBy. Recall that V is v is
contact if Lvλ “ fλ for f P C8pMq. Note that this is equivalent to f˚pξq “ ξ.
Our goal is to compute the characteristic foliation and dividing set of T 2 Ď D2 ˆS1.
We will do this in the following steps:

1. Show that T 2 “ BpD2 ˆ S1q is convex, i.e.

(a) Show V is contact, and

(b) Show that V is transverse to T 2.

2. Draw the characteristic foliation Fξ on T 2

3. Compute the dividing set Γξ.
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1.2 Worked Example of a Convex Surface 1 CONVEX SURFACES

Proof.

1. (a) Recall that V is contact if LV λ “ ιV ˝ dλ` d ˝ ιV λ “ λ. We calculate

ιV ˝ dλ “dpx cospθq ´ y sinpθqq

“dpx cospθq ´ y sinpθqq

“cospθqdx´ x sinpθqdθ ´ sinpθqdy ´ y cospθqdθ

“λ´ px sinpθq ` y cospθqqdθ

and

d ˝ ιV λ “ιV p´ sinpθqdθ ^ dx´ cospθqdθ ^ dyq

“´ιV psinpθqdθ ^ dx` cospθqdθ ^ dyq

“´p´x sinpθqdθ ´ y cospθqdθq

“´p´x sinpθqdθ ´ y cospθqdθq

“px sinpθq ` y cospθqqdθ

From which we can read off that d ˝ ιV λ cancels out the second term in
the expansion of ιv ˝ dλ, so LV λ “ λ. That is, V is contact for λ.

(b) To show that V is transverse to T 2, we must first find a parametrization
of the tangent space of T 2. Recall that

Σ :“ T 2 “ BpD2 ˆ S1q “ Btpx, y, θq P R2 ˆ S1 | x2 ` y2 ď 1u

“ tpx, y, θq P R2 ˆ S1 | x2 ` y2 “ 1u.

Change coordinates ϕ : ψ ÞÑ pcospψq, sinpψqq “ px, yq so that

T 2 “ tpψ, θq P S1 ˆ S1u.

The tangent space is then generated by ϕ˚pBψq, Bθ, i.e.

Tpψ,θqΣ “

C

¨

˝

´ sinpψq

cospψq

0

˛

‚,

¨

˝

0
0
1

˛

‚

G

“ x´yBx ` xBy, Bθy. (*)

For which we can see that certainly V “ xBx ` yBy is transverse to both
´yBx ` xBy and Bθ (their inner product is 0 wrt. the standard inner
product on R3).

2. Recall that the characteristic foliation of T 2 is given by intersecting its tangent
space with the contact structure of the ambient contact manifold. Since we’re
intersecting two 2-plane distributions on a 3-manifold, dimension counting tells
us that generically the outcome will be a 1-dimensional vector bundle over
T 2, with some (generically countable or finite) collection of singular points.
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1.3 Dividing Sets 1 CONVEX SURFACES

We may integrate this (ignoring singular points for now) to give rise to the
characteristic foliation.

Recall that our contact form is λ “ cospθqdx´ sinpθqdy, and hence our contact
structure is spanned by

ξpx,y,θq “

C

¨

˝

sinpθq

cospθq

0

˛

‚,

¨

˝

0
0
1

˛

‚

G

(**)

For which we can read off that the characteristic foliation is given by the
integral curves of the vector field Bθ

3. From (*) and (**), the dividing set is precisely the points p P Σ where TpΣ “ ξp.
This parametrization makes it clear where this may happen: namely where

x “ ˘ cospθq, and y “ ¯ sinpθq.

Putting all of this together, we obtain the following picture:

y

θ

x

Fξ

Γξ “ γ` Y γ´

Figure 1: Characteristic foliation of T 2 in orange, with dividing curves in blue. Here,
we identify the left end of the cylinder with θ “ 0, and the right end with θ “ 2π,
so that each blue curve closes up under the quotient to give a p1, 1q curve.

1.3 Dividing Sets Determine Contact Structure

So far, we’ve defined characteristic foliations, contact vector fields, convex surfaces,
and dividing sets. We’ve also looked at a specific example, T 2 Ă S1 ˆD2. The con-
struction of these was motivated by reducing the problem of gluing two 3-manifolds
along a common surface to something smaller - in this case matching up their di-
viding sets. We need to still check that this is really enough, i.e. that specifying a
dividing set is enough to specify the contact structure on the surface and moreover
on a tubular neighborhood of the surface. That way, if we can match up two dividing
sets of surfaces in some fashion, then there will be an extension of this matching to
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1.3 Dividing Sets 1 CONVEX SURFACES

a tubular neighborhood of the surface. This will allow us to identify the contact
structures over the gluing regions between the manifolds.
In order to talk about dividing sets giving rise to convexity of a surface, we need to
first introduce a notion of a dividing set that is independent of them.

Definition 1.9. Let F be a singular 1-dimensional foliation on a closed surface
Σ Ă pM3, ξq. Then a multicurve Γ divides F if:

(a) Γ is transverse to the foliation F

(b) There exists an area form Ω and a vector field X defining F such that

• LXΩ ‰ 0 on ΣzΓ, and

• Σ˘ :“ t˘divΩpXq ą 0u∗, ΣzΓ “ Σ` YΣ´, and X points out of Σ` along
Γ.

Let’s break down what this definition is saying: the dividing set Γ of the characteristic
foliation Sξ is transverse to Fξ, so this is covered in condition (a). The second part
describes the complement of Γ as two disjoint regions - ones where the characteristic
foliation is flowing away and towards Γ respectively.

Γξ

Σ´

Σ`

Figure 2: Σ “ Σ´YΓξ
Σ`. Note that on Σ`, the characteristic foliation flows towards

Γξ in positive time.

∗Recall that the divergence divΩpXq of a vector field X on Σ with respect to the area form Ω
is defined by LXpΩq “ divΩpXqΩ (remember here Ω is in the top cohomology class and so all area
forms are related by some multiple of a function). Using the Cartan formula we can rewrite this as
divΩpXq “ dpιXΩq.
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1.3 Dividing Sets 1 CONVEX SURFACES

There are two important theorems that nail down how dividing sets capture the
information of the characteristic foliation of a convex surface:

Theorem 1.10 ([Gei08], Theorem 4.8.5). Let Σ be a surface in pM3, ξq.

(a) Σ is convex if and only if Fξ is divided by a collection of embedded circles Γ
on Σ.

(b) Γ is determined by Fξ up to isotopy through curves transverse to Fξ. In other
words, given two contact vector fields v0, v1 for which Σ is convex, one can find
an isotopy ψt : S Ñ S such that ψ1pΓ0q “ Γ1.

Theorem 1.11 ([Gei08], Theorem 4.8.11). Let Σ ãÑ pM3, ξq be convex, and let
F be any singular foliation divided by Γξ. Then for any tubular neighborhood of
Σ, νΣ, there exists an isotopy ψt : Σ Ñ νΣ through convex embeddings such that
pψ1pΣqqξ “ pψ1q˚F .

General Idea. Theorem 1.10 says that convexity is determined by a dividing set -
so if you can find a set that does what Definition 1.9 says, then you know that Σ
must admit a contact vector field. Moreover, this choice of contact vector field is
unique up to isotopy. So the dividing set is not determined by your choice of contact
vector field, but rather the underlying contact structure of the ambient manifold.

Remark 3. Let Σ ãÑ pM3, ξq be a surface, and let Fξ denote its characteristic
foliation. Then Fξ determines ξ in a neighborhood of Σ.

Proof. This is a special case of Giroux’s theorem, Thm 2.5.22 in [Gei08]. Roughly,
the theorem says that given a diffeomorphism between surfaces ϕ : Σ0 Ñ Σ1 Ă Y
such that ϕ˚pΣ0,ξ0q “ Σ1,ξ, then one may extend the ϕ to a contactomorphism of a
neighborhood of each surface.

• Assume that a contact form in a neighborhood of each surface can be written
as α0 “ β0 ` u0dz and similarly for α1, where β0 is a smooth z-family of 1-
forms and u0 a smooth z-family of functions. Then, the characteristic foliation
is given as kerpβ0q restricted to Σ.

Σ

νpΣq

z

α » β ` udz

12



1.3 Dividing Sets 1 CONVEX SURFACES

• Extend ϕ to a neighborhood of each Σ, and consider the 1-forms α0 and ϕ˚α1

restricted to the neighborhood of Σ0.

• We can then run a Moser-type argument, observing that for sufficiently small
neighborhoods, the convex-linear combination of α and ϕ˚pα0q are also contact
on a neighborhood of Σ0, and cut out a smooth family of foliations of Σ0:

αt :“ tϕ˚α1 ´ p1 ´ tqα0.

• More precisely, using the Moser trick, we find an isotopy ψ : M ˆ r0, 1s Ñ M
such that ψ˚

t αt “ λtα0 for some family of smooth functions λt :M Ñ R. Then
ψ1 ˝ ϕ : νΣ0 Ñ νΣ1 is the desired contactomorphism.

Of course, this proof relies on the existence of such a diffeomorphism taking one
characteristic foliation to another. In the set up of our remark, however, we do not
have this piece of information. Since our characteristic foliations may be singular, it
is not that easy to cook up a diffeomorphism that respects the foliation,though they
may be homeomorphic. Sections 4.6-4.8 of [Gei08] discusses how one can eliminate
certain singularities from occuring, outside of which one does not run into problems
creating the diffeomorphism.
We will now prove Theorems 1.10 and 1.11.
Proof. Of Theorem 1.10.

(a) The forwards direction follows by definition. If Σ is convex, then we may define
the characteristic foliation of Σ and the dividing set as in Definitions 1.2 and
1.5. Then Γξ is a collection of embedded circles on Σ, and Fξ is divided by Γξ
by Lemma 1.7. To show the other direction, let us suppose that Fξ is divided
by a collection of embedded circles on Σ, as in Definition 1.9. Let Ω and X be
as in the definition. We need to show that Σ is convex, and so must cook up
some contact vector field v that is transverse to Σ.

Idea: To do so, we’ll consider a tubular neighborhood ΣˆRz, and construct a
new contact form α̃ such that α̃ and α induce the same characteristic foliation
on Σ. In particular, we will construct α̃ to be R-invariant, so that v “ Bz is a
contact vector field that is naturally transverse to Σ. This will ensure that Σ is
convex with respect to ker α̃. And since α̃ and α share the same characteristic
foliation, then by Remark 3, Σ will also be convex with respect to ker α̃ “ ξ.

Let β “ ιXΩ and set α̃ “ β ` udz. Then α̃ is an R-invariant 1-form on ΣˆR,
where u : S Ñ R is some smooth function that does not depend on z. We
identify i : Σ » Σ ˆ t0u ãÑ Σ ˆ R. Note that ker i˚pα̃q “ kerβ|Σˆt0u “ Fξ. In
other words, α and α̃ induce the same characteristic foliation on Σ. We have
yet to define u, however, and the last piece of the puzzle we need is that α̃ is
contact. Then, we can appeal to Remark 3, and apply the logic of above.
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1.3 Dividing Sets 1 CONVEX SURFACES

Let us rewrite the contact condition in terms of u and X to see how this may
inform our choice:

α̃ ^ dα̃ “pβ ` udzq ^ dpβ ` udzq

“β ^ dβ ` β ^ du^ dz ` udz ^ dβ ` udz ^ du^ dz

“pβ ^ du` udβq ^ dz ą 0

so that α̃ is contact iff pβ ^ du´ udβq is a positive area form on Σ. In the last
line, note that dβ is a 2-form, and dz is a 1-form, so that dz ^ dβ “ dβ ^ dz.
Now, β :“ ιXΩ, so we may rewrite this condition as

β ^ du` udβ ą 0

ô pιXΩq ^ du` udpιxΩq ą 0

ô ´XpuqΩ ` udivΩpXqΩ ą 0

ô udivΩpXq ´Xpuq ą 0.

We set u ” ˘1 on Σ˘. Then the contact condition holds on these pieces. We
now just have to interpolate over Γ. [Gei08] goes into detail about how one
can do this on page 234 (hopefully I’ll have time to add these details later).

(b) Suppose that Σ is a convex surface with respect to two different contact vector
field v0 and v1. To prove the theorem, we’d like to show that there is an
isotopy ψt : Σ Ñ Σ taking one dividing set Γ0 to another Γ1. Moreover, we
have to show that for each t P r0, 1s, ψtpΓ0q is transverse to Fξ. Assume that
the vector fields v0 and v1 are compactly supported near Σ, so that we may
use their respective flows to identify a neighbourhood of Σ (in two different
ways) with ΣˆR. Under these identifications, the contact structure ξ gives us
two vertically invariant contact structures ξ0 and ξ1 on Σ ˆ R, both inducing
the characteristic foliation Fξ on Σ ” Σ ˆ t0u. Thus, wlog we may write
ξi “ kerpβ ` uidzq. Then Γi is the zero set of the function ui. Moreover, the
contact condition for fixed β, is convex in u, so we have the linear interpolation
of vertically invariant contact forms β`pp1´tqu0`tu1qdz, t P r0, 1s, on ΣˆR.
This gives us an R–equivariant isotopy ψt “ ϕt ˆ idR. Hence, the isotopy
ϕt : Σ Ñ Σ moves the zero set of u0 to the zero set Γ1 of u1, via dividing sets
of Fξ given by the zero sets of p1´tqu0`tu1, all of which constitute collections
of curves transverse to Fξ.
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1.3 Dividing Sets 1 CONVEX SURFACES

Proof. Of Theorem 1.11. Let Σ ãÑ pM3, ξq be a convex surface, and let F be
any singular foliation divided by Γξ. We can identify a neighborhood of Σ contac-
tomorphically with Σ ˆ R, equipped with a vertically invariant contact structure
ξ » ξ0 “ kerα0, with α0 “ β0 `u0dz. Choose a collection A of closed annuli around
the dividing curves in such a way that the flow lines of both Fξ and F foliate each
annulus by line segments from one boundary component to the other (and trans-
verse to the boundary). We assume that we are in the set up of Definition 1.9,
so that we have an area form Ω on Σ and a vector field X0 directing Fξ, so that
α0 “ ιX0Ω ` u0dz with u0 ” ˘1 on Σ˘zAo, and ˘divΩpXq ą 0 on Σ˘. We also
assume that Γξ “ u´1

0 p0q.
By assumption, F is divided by Γξ. Hence, there exists a vector field X 1 and an area
form Ω1 on Σ such that ˘divΩ1pX 1q ą 0 on Σ˘. Moreover, since we’re on a closed
surface, Ω1 “ gΩ for some nonvanishing function g : Σ Ñ R, g ą 0.
Now,

gdivgΩpX 1q “ divΩpgX 1q,

so that if we set X1 :“ gX 1, then divΩpX1q ą 0 whenever divgΩpX 1q ą 0. Hence, X1

is a vector field such that ˘divΩpX1q ą 0 on Σ˘. In particular, X1 also directs F .
Following the standard Moser trick, our goal is to find some 1-parameter family
of one forms αt such that α0 is our original contact form, and kerα1 “: ξ1 has
characteristic foliation of Σ precisely F . We define Xt :“ p1 ´ tqX0 ` tX1, and set
αt :“ ιXtΩ ` utdz, for some ut satisfying the same conditions as u0. In particular,
note that X1 defines F , so that actually F “ Fξ1 .
We integrate the family Xt to give an isotopy ψt : M Ñ M such that pψtq

˚ξt “ ξ0.
Moreover, ψt restricts to a neighborhood of Σ, ψt : Σ Ñ νpΣq and we have that

pψ1pΣqqξ0 “pTψ1pΣq X ξ0q

“pψ1q˚pTΣq X ξ0

“pψ1q˚pTΣq X pψ1q˚pξ1q

“pψ1q˚pTΣ X ξ1q

“pψ1q˚pFξ1q

“pψ1q˚pFq,

as required.
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1.4 Convex Surfaces in Action

Example 1: Qiuyu

pM1, ξ1q and pM2, ξ2q, we can take the connect sum pM1#M2, ξ1#ξ2q. Take a local
ball, and you can arrange so that boundary is convex and the dividing set is just a
meridian.

Example 2: Jianru

Let M be a connected 3-mfld that is compact, and let Γ Ă BM . Let F be a singular
foliation divided by Γ. Define

ContpM,Fq “ tall contact structures ξ on M | BM is convex , ξBM “ Fu

up to isotopy of ξ relative to boundary.
Observe if F 1 is also divided by Γ, then Giroux flexibility says that the set ContpM,F 1q

is in 1-1 correspondence. I.e. there’s a bijection between these two sets.

Example 3: Audrey

Crazy theorem of Gabai: if Σ Ă M minimizes gens in its homology class, then there
exists a taut foliation F such that Σ is a leaf.
Proof: Sutured manifold hierarchies.
Convex manifold hierarchies were then established by Honda. Used to create hyper-
tight Reeb flows Sutured ECH, HF, etc. Building Reeb flows
Colin and Honda - survey paper called "Foliations, contact structures and their
interactions in dimension 3"

Example 4: Elliot

How dividing sets can change - bypass

Example 5: Robert

Σ ‰ S2 that is convex with dividing set Γ, then νpΣq is tight if and only if Γ has no
homotopically trivial curves. Giroux’s criterion for tightness. Can use this theorem
with one of Eliashberg Ko Honda paper used to classify tight contact structures on
Torus. classify all tight contact structures on using Eliashberg’s theorem.

Example 6: Nancy

Non simple Legendrian knots
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2 Open Book Decompositions

2.1 First Definitions of an Open Book

Definition 2.1 (Open Book Decomposition). Open book decomposition of a 3-
manifold M is a representation of M comprising a link L Ă M and a fibration
π :MzL Ñ S1 such that any fiber of the fibration is a Seifert surface S for the link,
i.e. BS “ L.

Example. The following fibration of S3 over the Hopf link that is not an open book
decomposition, since the boundary is not the whole link L.

‚ 8 π : S3zL Ñ S1

π´1ppq » A

Figure 3: Hopf Link (blue) in S3.

Example. We can however construct two other fibrations of S3 over the Hopf link
which are open book decompositions. These are called the right handed OBD
and the left handed OBD.

Right handed Left handed

This picture can also be described algebraically. Consider S3 in C2 as

S3 “ tpz1, z2q P C2 | |z1|2 ` |z2|2 “ 1u “ tpr1, r2, θ1, θ2q | r21 ` r22 “ 1u

17



2.1 First Definitions of an Open Book 2 OPEN BOOK DECOMPOSITIONS

We can identify the Hopf link with the subspace H “ tr1r2 “ 0u. From here, we
can explicitly write down a fibration π : S3zL Ñ S1 which sends

πpr1, θ1, r2, θ ´ 2q “ θ1 ´ θ2.

One can check that all singular points lie on L, which is not in the domain. Another
fibration is given by the projection map

πpr1, θ1, r2, θ ´ 2q “ θ1 ` θ2.

These projection maps correspond to the left and right handed fibrations as above.
T Add Elliot’s picture about the hope fibration of S3 over S2 and you can see the
preimage of each line is an annulus, and you get right/left handed depended on which
hopf fibration you choose.
Another picture: express S3 “ S1 ˚ S1, where ˚ denotes join.

X

Y

X › Y :“ X \ Y Y pX ˆ Y ˆ Iq S3 “ S1 › S1

Figure 4: Right and left handed open book decomposition of S3 » S1 › S1.

We recover the right handed fibration by letting θ1 P r0, 2πs and θ2 “ θ1 ` τ , with
τ P r0, 2πs. You recover the left-handed fibration by letting θ2 “ τ ´ θ1.

Remark 4. For crossings ď 13, a knot if fibered if and only if the Alexander poly-
nomial is monic. In this case, the genus of the fiber is g, where the Alexander
polynomial has degree 2g.

Theorem 2.2. Any closed, orientable connected 3-manifold M admits an open book
decomposition. I.e. you can find a link L Ă M along with a. fibration whose leaves
have boundary L.

Definition 2.3 (Abstract open book). Given a compact, connected, oriented surface
with boundary Σ and a diffeomorphism ϕ : Σ Ñ Σ which fixes pointwise BΣ, we can
form a 3-manifold out of this data by constructing the mapping torus of ϕ,

pΣ ˆ Iq{ppx, 1q „ pϕpxq, 0qq

18
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which has torus boundary “ BΣ ˆ pI{BIq. The surface Σ is called the page of
the open book, and the map ϕ is called the monodromy of the open book (or
more specifically of the mapping torus). We would like to eliminate the boundary
components, and so we Dehn-fill the mapping torus to kill txuˆS1 for x P BΣ. After
these two procedures to get a closed M3. The core of the Dehn filling is called the
binding. We denote an abstract open book by pΣ, ϕq, where B is fixed by such a
choice.

Σ

Σ1

Σ2

txu ˆ S1
S1

pMzBqzΣ » Σ ˆ I

p

Figure 5: Schematic of OBD via mapping torus.

It is not hard to see that our first definition of an open book agrees with our new
definition.
John Etnyre’s handwritten notes contain good pictures of some examples including
Milnor fibrations (need to add citation)

2.2 Supported contact structures

Definition 2.4. Let pM, ξq be a contact 3-manifold. The contact structure ξ is said
to be supported by an open book of M (up to isotopy of ξ) if there exists a
contact 1-form α for ξ such that

• dα restricts to a positive volume form on each page of the decomposition Σ,
with respect to a chosen orientation of the page.

• α is positive on the binding, with respect to the induced orientation of the
page.
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Proposition 2.5. A contact structure ξ on M is supported by open book if and only
if there exists (up to isotopy) a contact 1-form α such that the corresponding Reeb
vector field Rα is tangent to the binding and transverse to every page.

Σ

txu ˆ S1

We can think of things in terms of the Reeb fields R. The condition that dα ą 0
is that the Reeb field R is positively transverse to Pc. The Reeb field twists as
you move along Pc towards the binding. Around the binding, the Reeb field circles
around, with ever decreasing slope the closer you move to the binding. With this
construction, the Reeb field is parallel to the binding.
If we choose two pages Σc and Σ´c and union them together, we see that the resulting
surface Γc “ Σc \ Σ´c is convex, with dividing set exactly the binding of the open
book.

Theorem 2.6 (Thurston- Winkelnkember). Any open book supports a contact struc-
ture.

Proof. First, fix local coordinates of the neighborhood of the binding. Think of this
as the torus used to Dehn fill the mapping torus of Σ, from the abstract open book
decomposition construction pΣ, hq. Call the binding direction θ, the radial direction
r, and the angular direction around the binding t.
Find a 1-form α on Σ such that

1. dα ą 0 on Σ

2. α “ p2 ´ rqdθ near BΣ.

The set of all α such that the above holds is convex in Ω1pΣq. Furthermore, h˚α
satisfies conditions 1,2. Therefore, tα ` p1 ´ tqh˚α satisfies conditions 1,2. Choose
β P Ω1pΣ ˆ Iq, defined by β “ tα ` p1 ´ tqh˚α. Then β induces a one-form on
the mapping torus Th. (We constructed β to satisfy this). Furthermore, β satisfies
conditions 1,2. Construct the form β ` Kdt for K ąą 0. Then, this is contact.
Indeed, we compute pβ `Kdtq ^ dβ “ β ^ dβ `Kdt^ dβ. The first term may very
well be negative or zero. The second term is always positive, because we fix dβ ą 0.
Therefore, for K large enough, the associated volume form must be positive. Now
we extend β to a neighborhood of the binding. To do this, we find a contact form
on the solid torus such that it agrees at r “ 1 with the local model we imposed for
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2.2 Supported contact structures 2 OPEN BOOK DECOMPOSITIONS

β on the mapping torus. Looking back to condition 1, we know β “ p2´ rqdθ`Kdt
near r “ 1. For our local model, we take

β “ fprqdθ ` gprqdt r P r0, 1s

We need these functions f, g to satisfy a number of conditions. For this to be a
contact form locally, we check that

β ^ dβ “ pfg1 ´ f 1gqdθ ^ dr ^ dt.

We need

• fg1 ´ f 1g ą 0 so that β is contact.

• fprq “ 2 ´ r, and gprq “ K near r “ 1 so that local models match up.

• fprq ą 0 near r “ 0 so that αpLq ą 0, i.e. that the binding is contact.

• f 1prq ą 0 everywhere so that dβ ą 0 on leaves.

• gprq „ r2 near r “ 0 so that gprqdt vanishes as r Ñ 0. But remember that rdt
is the nonsingular part, so for this to vanish we need to use r2dt.

To satisfy all of these, we pick fprq “ 2 ´ r2 and gprq “ r2. We can check that this
satisfies all the conditions above.
Observe that the constructed local form around the binding has the binding as a
Reeb orbit.

Theorem 2.7 (Giroux). Any two contact structures ξ1, ξ2 supported by the same
open book are isotopic via a path of contact structures.

Proof. Let β0, β1 be any two contact 1-forms carried by the open book pL, πq. The
convex combination of β0 with β1 does not work. But, we can force things to be
contact by adding in a term Kdt for K ąą 0. choose a function fprq such that
fprq „ r2 near r “ 0, and fprq “ 1 when r ě 1. Then, take the contact form

βK “ β ` fprqKdt

Computing the contact volume, we see

βK ^ dβK “ pβ ` fKdtq ^ pdβ ` f 1Kr ^ tq

“ β ^ β `Kft^ β ` f 1Kβ ^ r ^ t

The first term is always positive because β is contact. The second is strictly positive
outside of the binding (as β is positive on the pages), and nonnegative on M . The
third term is strictly positive near the binding, and nonnegative on M . All together,
βK is contact. Then, the interpolation

tβK0 ` p1 ´ tqβK1

is contact for K ąą 0. Therefore, we can interpolate between contact forms sup-
ported by an open book.
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3 Giroux Correspondence

The last thing we’ll do in this seminar is discuss Giroux correspondence, a profound
result that completely pins down the relationship between open book decompositions
and supported contact structures of a manifold. The statement is the following.

Theorem 3.1 (Giroux Correspondence). Let M3 be a closed, oriented 3-manifold.
Then there is a correspondence

tOriented ξ on Muätisotopyu ÐÑ tOBDs on Muät+ve stabilizationu

Let’s unpack what this statement is saying. We’ve already seen that any open book
supports a contact structure, and that two contact structures supported by the same
open book are isotopic via a path of contact structures. So, we’ve established that

Φ : tOBDs on Muät+ve stabilizationu ÝÑ tOriented ξ on Muätisotopyu

is a function between sets. We’d like to show that this function is surjective an
injective. In other words, the work that remains is to show that every contact
structure is supported by an open book decomposition, and that these open book
decompositions are unique up to stabilization.

Theorem 3.2 (Giroux, 2000). Let pM, ξq be a contact 3-manifold. Then M admits
an open book decomposition pΣ, ϕq that supports ξ.

Proof. I could just write the really shitty version where we don’t explain how to
isotope the CW complex, and then quote some big theorems.
The result of theorem 3.2 tells us that the function Φ is surjective. We now need to
prove that it is injective. The following discussion will give us some progress towards
this.

3.1 Stabilization

The goal is to give some understanding of the following theorem.

Theorem 3.3. The open books supporting a given contact 3-manifold pM, ξq are
unique up to positive stabilization.

Establishing injectivity of the map Φ is difficult. We will only show that two open
book decompositions support the same contact structure if they are related by sta-
bilizations. We will not discuss the “only if” version of this statement. Before we
define stabilizations, here is an immediate observation of this fact.

Example. The standard contact structure on S3 is supported by the positive Hopf
link with its associated knot fibration, but not the negative Hopf link. So the positive
and negative Hopf link fibrations are never positive stable-equivalent.
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3.1 Stabilization 3 GIROUX CORRESPONDENCE

Definition 3.4. The positive/negative stabilization of an open book pΣ, ϕq is
the open book S˘pΣ, ϕq where the pages are Ξ with a one handle attached, and the
monodromy is ϕ ˝ τ˘, where τ˘ is the left/right handed Dehn twist arond the core
C of the attached one-handle.

This is a special example of the Murasugi sum. For two abstract open book
decompositions pΣ1, ϕ1qq and pΣ2, ϕ2q, we can add them together via the following
process. Choose properly embedded arc ci on each Σi, and denote by and Ri a
rectangular neighborhood of ci in Σi. We form the Murasugi sum pΣ1ϕ1q ‹ pΣ2, ϕ2q

as the open book decomposition with page Σ1 YR1„R2 Σ2, and monodromy ϕ2˝1,
where we extend the diffeomorphism across the surface by the identity. The ˘

Stabilization is the Murasugi sum with the annulus as the page and with a right/left
handed Dehn twist as the monodromy.
The resulting 3-manifold of the Murasugi sum is independent of ci, but the open
book decomposition does depend on the choice ci. This is already clear in the case
of ˘ stabilizations. Observe that stabilization via different curves can change the
boundary components, and so can change the topology of the surface S˘Σ. yet we
will see, the 3-manifolds are the same.

Theorem 3.5 (Gabai, 1983). If pMi, ξiq are supported by the open book pΣi, ϕiq for
i “ 1, 2, then Y1#Y2 with its connect sum contact structure ξ1#ξ2 is supported by
the open book pΣ1, ϕ1q ‹ pΣ2, ϕ2q.

Remark 5. To connect sum contact structures relative to chosen base points, we
first must choose a Darboux chart around each point. A sufficiently small 3-ball
will be tight, and so its boundary is a convex structure with a single dividing curve.
By contact surgery, we can canonically glue the two manifolds together along these
small 2-spheres. This defines the connect sum contact structure, up to isotopy.

Corollary 3.6. The stabilization corresponds to the connect sum witha 3-sphere
with the Hopf open book decomposition, so it does not change the topological type
of the manifold nor the contact structure:

MS˘pΣ,ϕq – MpΣ,ϕq#MpS3,ξ0q “ MpΣ,ϕq.

We sketch the proof of theorem 3.5.
Proof. We’ll employ the following strategy. First, we’ll draw MpΣ1,ϕ1q‹pΣ2,ϕ2q ab-
stractly as a mapping torus that has been Dehn filled. Our goal will then be to find a
2-sphere in this three manifold along which we can cut so that each end is isomorphic
to MpΣi,ϕiq for each i “ 1, 2. I.e., so that M decomposes as a connect sum of these
two abstract open book decompositions. To build such a 2-sphere, We’ll first restrict
ourselves to a neighborhood of a page, Σ1 ‹ Σ2 ˆ I. The rough idea is as follows.
Here, we can find a surface S with boundary given by 4 parallel strands, each cut
out by some pˆ I. After gluing in a neighborhood of the binding, we can find a disc
with boundary given by any one of these strands, and by gluing them to S we get a
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3.1 Stabilization 3 GIROUX CORRESPONDENCE

sphere. (need to add figure) How can we be so sure that such a surface exists? Well,
to build this surface, we can take our four parallel strands be the “corners” of the
Murasugi sum - the places where the two surfaces’ boundaries are glued together.
These four points can be paired up in two different ways - using the arc c1 from Σ1

or using the arc c2 from Σ2. On the lower half of the interval, fill in by pairing the
points via c1. After gluing in 4 discs along each of the boundary components, we get
a 2-sphere.
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